
Support for Managing Design-Time Decisions
Alexander Egyed, Member, IEEE, and David S. Wile

Abstract—The desirability of maintaining multiple stakeholders’ interests during the software design process argues for leaving

choices undecided as long as possible. Yet, any form of underspecification, either missing information or undecided choices, must be

resolved before automated analysis tools can be used. This paper demonstrates how Constraint Satisfaction Problem Solution

Techniques (CSTs) can be used to automatically reduce the space of choices for ambiguities by incorporating the local effects of

constraints, ultimately with more global consequences. As constraints typical of those encountered during the software design

process, we use UML consistency and well-formedness rules. It is somewhat surprising that CSTs are suitable for the software

modeling domain since the constraints may relate many ambiguities during their evaluation, encountering a well-known problem with

CSTs called the k-consistency problem. This paper demonstrates that our CST-based approach is computationally scalable and

effective—as evidenced by empirical experiments based on dozens of industrial models.

Index Terms—UML, design choices, consistency checking, design alternatives, choice elimination.

Ç

1 INTRODUCTION

DESIGN choices arise naturally during software develop-
ment in decisions involving: conflicting opinions

among two or more stakeholders [8], alternative imple-
mentations, partially known or understood goals (i.e.,
requirements), imprecise model semantics [26], partially
known trace dependencies among design artifacts [9], and
many others. The decisions made for these design choices
can have the most telling consequences downstream in the
development process [2], especially, if they are made during
the early stages of the software life cycle.

If the ambiguities these decisions must ultimately resolve
remain completely inside the designer’s head—indeed if the
choices available are not even characterized—one cannot
effectively “backtrack” in the design process when dead
ends are reached. We focus on supporting the maintenance
of designs in which such ambiguities are formally identified
as choices in the design space. Yet, we do not believe that it

is possible for an “automated assistant” to make good or

even adequate design decisions, because designers, in part,

base their decisions on information too imprecise to be

modeled. In fact, we are unable to know the actual
constraints that make any design choice the best—or a
“good enough”—choice because decision factors remain
locked in the head of the designer. Many of these
constraints may not even be capable of being formulated
formally, reflecting matters of taste, style, experience,
personal preferences, discussions, expected evolution,
“gut” feelings, etc. Yet, we do see a role for an automated
assistant in telling the developer what choices are infeasible

based on the current level of knowledge (i.e., the model) and

currently known considerations (i.e., the known constraints

on the model). Such an assistant would tell the designer
what choices to ignore, as they are guaranteed to violate
known design constraints, and it would leave it up to the
designer to decide on the remaining choices in a manner
that reflects his or her unmodeled beliefs.

To motivate and support the development of such an
assistant, here we describe how to apply constraint propaga-
tion algorithms used in Constraint Satisfaction Problem
(CSP) solution techniques [15] (CST) to automatically
reduce the set of infeasible choices in software development
activities. Our technology is useful in that it reduces the set
of choices based on the known constraints such that it
guarantees that all the choices the algorithm eliminates are
indeed infeasible—that is, they cannot possibly satisfy the
known constraints. Of course, this guarantee is valid even
though not all constraints may be known or formalizable
(because a provably false constraint will exist when the
infeasible choice is eliminated); however, there is no
guarantee that all of the remaining choices, the ones that
are not labeled as infeasible, are indeed feasible.

The particular environment used to demonstrate the
technology is the Unified Modeling Language (UML) [26]
support environment, IBM Rational Rose2 [17]. This
environment was chosen in part for its rich set of
interrelated, alternative representations for software devel-
opment artifacts. Although application of CST to UML
models and to UML consistency and well-formedness rules
is fairly straightforward, there are several issues that
complicate matters:

1. UML consistency and well-formedness rules access a
variable number of model elements (and, thus, a
variable number of ambiguities), which makes this
problem a k-consistency CSP, known to be NP-hard.
Hence, the techniques would not appear to be
scalable.

2. It is necessary to treat the UML consistency and
well-formedness rules as black-box constraints,
relying on a form of model profiling to discover the
embedded ambiguities. Hence, the algorithm cannot
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predict ahead of time which model elements and
ambiguities will be encountered during evaluation.
Many CSP optimizations are based on having this
knowledge upfront and, thus, are not applicable.

Other more technical issues will be discussed as the
algorithm is explained.

It must be stressed that it is not our goal to find a “good”
solution for a set of choices and constraints. For example,
CSTs could compute a possible solution that satisfies all
known constraints. But, to the designer, this solution would
be meaningless because it would not consider the designer’s
unmodeled or unknown constraints. We thus do not
advocate using CSTs for this purpose.

Yet, we do advocate using CSTs for eliminating
infeasible choices that the designer should not consider
once they are guaranteed to be inconsistent with the choices
already made. We know that many design choices are
eliminated in the head of the designer without ever
formulating them [14]. Yet, we also know that many
projects fail because they did not adequately consider the
feasibility of these choices. This paper demonstrates how to
adapt CSTs to the UML ambiguity problem so that they
avoid the complications discussed above. Below, we
introduce our approach formally and illustrate it on an
example. We also present empirical evidence that, with
reasonable assumptions about design constraints, our
approach is sufficiently fast to be used in a normal software
development process. We demonstrate that its complexity is
the size of the model times the number of constraints. And,
we present empirical evidence based on 27 UML models
with tens of thousands of model elements in total. Since
CSTs are incapable of identifying all infeasible choices, we
also present empirical evidence that shows that our
approach removes most of the infeasible choices and it is
near optimal in the UML domain. Given the wide use of
UML, our approach is clearly relevant to a large commu-
nity, but it must be noted that our approach will work
similarly well with other design languages (e.g., DFD
diagrams) or architecture description languages, where
localized language constraints tend to relate small numbers
of design artifacts.

2 RELATED WORK

The problem we are trying to solve is a specific formulation
of the constraint satisfaction problem (CSP) [15], tailored to
constraints and choices commonly found in software
engineering designs. A constraint-based problem is com-
prised of a set of variables (each with its own domain of
values that can be used to fill the variables) and a set of
constraints across one, two, or more of these variables. CSP
solution techniques (CSTs) either compute a set of feasible
values for all variables that satisfy all the constraints or fail,
when no such solution exists.

CSTs typically do both constraint propagation and domain
reduction. Constraint propagation eliminates many infeasi-
ble choices quickly. We make use of constraint propagation
in this paper. However, constraint propagation cannot
guarantee that the remaining choices, the ones that are not
labeled as infeasible, are indeed feasible. Domain reduction

then decides on these remaining choices. It does so through
a depth-first search and backtracking when a dead end is
reached. We do not make use of domain reduction here
because it is expensive and because we are near optimal in
the UML domain without it (see evaluation). This work is,
in essence, analogous to the arc consistency problem (AC3
in particular) [20]. Beyond the basic algorithm, the most
common optimizations are to:

. Limit constraints to one or two variables only (node
and arc consistency); but UML constraints are
typically k-consistency rules involving a variable
number of ambiguities.

. Bound the domain of choices for continuous (or
large) domains, treating multiple choices as a single
entity. UML choice sets are typically small and
discrete, so this is of no use here.

. Use semantic knowledge of the problem domain to
optimize for it. This is typically done to minimize
backtracking, which our approach avoids altogether.

It cannot be predicted ahead of time what model
elements (including ambiguities) will be encountered
during the evaluation of UML consistency constraints (i.e.,
they are black-box constraints). Moreover, depending on
what choices are substituted for ambiguities, UML consis-
tency constraints may encounter different ambiguities
thereafter. Basic CSP does not consider such variability,
but some variations begin to approach the issue. Dynamic
CSP [21] defines required and optional variables and
constraints that define when optional variables are re-
quired. This variation is not applicable to UML because all
ambiguities are expected to be always active (and because
there is no notion of a constraint that activates an
ambiguity). Composite CSP [27] is closer to our problem
in that hierarchies of variables are defined. Depending on
the value chosen for one ambiguity, other variables and
choices appear. However, this concept is also not directly
applicable to the UML domain, where this hierarchy is not
known a priori.

There are several areas for which specialized ambiguity
resolution schemes have been invented. For example, type
inference has matured to the point where it is a standard
tool in modern compilers, e.g., for Java, C++, and Visual
Basic. Perhaps the most advanced of these is the Hindley-
Milner type algorithm used in the Haskell language
implementations [16]. The unification algorithm used in
logic programming languages is similarly well-developed
[4], [18]. Other specialized applications include C++
template resolution and polymorphism resolution.

Our approach also relates to truth maintenance systems
(TMS) [7] that maintain support relations for facts that make
constraints hold. The obvious similarity is that TMSs build a
dependency representation similar to ours for maintaining
choice dependencies. Again, as with other exhaustive
search systems, they (generally) use dependency-directed
backtracking when confronted with new facts. The As-
sumption-based TMSs (ATMS) [19] do not backtrack and
their hierarchy for support relationships is closely related to
what we build dynamically. However, ATMSs require the
existence of dependencies in advance. No such dependen-
cies are known in model-based software development and,
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thus, ATMSs are not readily applicable to solving problems
in this domain. Our work resembles a lightweight version
of some of the ATMS concepts, but it identifies dependen-
cies dynamically.

Model checking applications seem as though they should
be related as well [12], but we have been unable to make an
appropriate reformulation of our problem into it. One
distinction from that work is that model checkers are
seeking a single inconsistency; our work seeks to eliminate
all inconsistent choices automatically. But, a more funda-
mental distinction seems to reside in the mechanisms for
implementing model checkers (and other forms of abstract
interpretation as well): They rely on having an abstract
representation of the constraint that can be manipulated
and reasoned about. For example, CTL labels states with
subformulas of the property to be verified [3]. Our approach
is independent of the constraint formulation; it simply relies
on having been provided an evaluation function for
constraints that aborts when an uninitialized choice variable
is encountered and otherwise returns true or false.

Clearly related to our work is consistency checking. Our
approach builds on top of an existing UML consistency
checking approach [10]. However, it must be stressed that
not every (UML) consistency checking mechanism would
suffice. The iterative nature of eliminating choices sug-
gested in this work ideally requires incremental consistency
checking as also proposed in xLinkIt [24] and ArgoUML
[25]. Batch consistency checking approaches would work
with our approach, but certain types of changes, such as
adding choices or removing constraints, would become
computationally more expensive.

An orthogonal approach that is complementary to ours,
but shares some of the same concerns, is that of automatic
repair of constraints (see work on consistency control in
deductive databases [22], repair framework [13], and repair
actions [23]). Here, the idea is to allow people to make
mistakes in modeling and then show them options for
fixing them. This could be made to fit tactically in a system
based on our algorithm when inconsistencies arise. How-
ever, the choices they identify do not necessarily corre-
spond to our ambiguity-choice pairs.

It must be emphasized that dealing with choices in
design models is about more than just reducing infeasible
choices. It is outside the scope of this paper to discuss other
aspects for managing the designer’s choices, such as
keeping a formal history of the choices [5] for later
maintenance, using version control and rollback mechan-
isms [29], recording why each alternative is rejected—e.g.,
why a service was modeled as a “class” rather than as a
“method” [30], or managing the problem-domain depen-
dencies among the decisions [1]. We simply provide the
foundational work for systems that allow designers to
record what they believe to be the significant design choice-
points and the alternatives to be considered.

3 ILLUSTRATION

In this paper, we assume that ambiguities are allowed in
any place in a model; for example, choices for types,
elements of sets, and even for methods of types for which
the type itself is ambiguous are all allowed. Also, no

preference exists that declares certain choices to be better

than others. The designer is, however, allowed to remove

choices manually or add new constraints at any time to help

further eliminate choices.
To illustrate the kinds of choices we want to support,

Fig. 1 introduces a running example comprised of several

related ambiguous models written in the Unified Modeling

Language (UML) [26]. The given models represent an early

design time snapshot of a real, albeit simplified, video-on-

demand system [6]. It includes a class diagram (top), a

sequence diagram (middle), and a state chart diagram

(bottom). The class diagram represents the component

structure of the system: a Display, a Service-providing

component, a Streamer that processes data, and a Server

that provides the data. Three ambiguities are embedded in

the classes. For example, Display has the mandatory set of

operations select, stop, and drawPicture, but it also has a

design choice, indicated by “???”, of whether to include

certain combinations of go, pause, and goPause (the arrow

leading from the class to the upper right of the figure points

to all choices of operations for Display that the designer

wants to allow). This ambiguity is the result of the design-

time uncertainty of whether the go (play) button of the

video player should also double as the pause button while

playing or whether there should be separate buttons for

play and pause. Note that the “???” label is only a visual cue

for the designer since modeling tools generally do not

support ambiguities and choices.
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The class Streamer contains ambiguities as well. In UML,
the class’s behavior must be described in the form of a
single statechart diagram, but two conflicting choices are
available. Option 1 assumes a connection delay and allows
an interaction protocol where wait and stream events may
occur anytime. Option 2 is different in that no explicit
connection delays are modeled and wait and stream events
may occur in a predefined order only. Both statechart
options have pros and cons and the designer thought it best
not to eliminate either choice at this development stage.
Related to this, the designer also declared the connect
method for the class Streamer as optional, i.e., ambiguous as
to its presence.

The sequence diagram describes the process of selecting
a movie and playing it. During design time, redundant
specifications are often a hindrance to the design process.
Hence, a common activity is to ignore the actual types of
objects during the design process. Ideally, the system can
fill them in (as in Haskell [16]). Here, the designer has
omitted the types for two of the three objects (only the type
of the first object is known to be Display). Also, the message
arrow between connect and stream was perhaps misspelled
and it now remains unknown what action name belongs to
it. All these cases define ambiguities where the class names
are given as choices for the object types and the method
names as choices for the missing message action (see arrows
to choices). For realistic use, we find it necessary to also
support ambiguities without choices (i.e., if the designer did
not yet capture alternatives). The ambiguity AE9 in the
sequence diagram is such an example.

Although all choices in the given model are valid, user-
defined choices, we will illustrate later that certain
combinations of choices are invalid. Consistency and well-
formedness rules for UML describe conditions that every
model must satisfy for it to be considered a valid UML
model, comprised of syntactic and semantic constraints.
Fig. 2 lists three such consistency rules for validating
sequence diagrams on class and statechart diagrams. The
next section demonstrates how the given, user-defined
choices in models are reduced while evaluating these kinds
of constraints.

4 ALGORITHMS

4.1 Definitions

A few definitions are useful. CSP calls ambiguities “vari-
ables” whose choices are values from a “domain.” In this
discussion, we adhere to the ambiguity/choice terminology
to avoid terminology conflicts with typical software

engineering terms. Each ambiguity is designated to be a
unique element of the type Ambiguity. The choices available
to an ambiguity are similarly unique elements of the type
Choice. The type Pairings is defined as sets of Ambiguity-
Choice pairs, specified:

Pairings ¼ Ambiguity$ Choice:

(The Z notation constructs used in the definitions will be
described as they are encountered.) This defines Pairings to
be a relation between ambiguities and choices. For example,
the object “s-b” in the sequence diagram in Fig. 1 is
ambiguous (AE7) in that it does not define its class type
(called the base type in UML). This means that we do not
know what class this object instantiates and there are four
choices: Display, Service, Streamer, or Server. Similarly, the
object “st” is also ambiguous (AE12) because it does not
define its base type. Although both ambiguities have the
same choices, these ambiguities and their choices are
independent of one another. That is, choosing the class
Display for ambiguity AE7 is independent of choosing the
class Display for AE12.

In CSP, a constraint is a Boolean condition over a set of
variables—a CSP constraint typically identifies the variables
explicitly. In UML, a constraint is a black-box function that
abstractly defines the correctness of a model. A UML
consistency rule does not identify ambiguities directly, but
instead provides navigation instructions for the UML
model. For example, consistency rule 2 evaluates whether
the message calling direction is consistent with the
association direction required by the class structure. This
consistency rule does not identify any model elements in
Fig. 1 explicitly nor does it identify ambiguities there. This
consistency rule can be invoked multiple times in Fig. 1 to
separately determine the truth values for all messages
depicted there (messages are the horizontal arrows among
the objects). Each of these invocations will be referred to as
a distinct “constraint” in the model below. Depending on
what message the rule is evaluated on, it may or may not
encounter ambiguities. If it does encounter ambiguities, it
may encounter different ones. It is generally not feasible to
predict in advance whether any given consistency rule
encounters an ambiguity during its evaluation.

If a model contains ambiguities, then the evaluation of a
constraint may encounter one or more of its ambiguities.
The constraint then requires the use of an Assignment to
resolve the ambiguities to determine the truth value. An
Assignment is a decision on which choice to take for any
ambiguity encountered during the evaluation of a con-
straint. An assignment is thus a function that given an
Ambiguity, returns a Choice:

Assignment ¼ Ambiguity! Choice:

For example, a valid assignment for the ambiguities
AE13, AE12, and AE7 in Fig. 1 is fAE13j ! select;AE12j !
Display;AE7j ! Serviceg (notice Z’s maplet symbol “j ! ”
that indicates pairs, e.g., AE13 maps to select). This
assignment defines exactly one choice per ambiguity.

A constraint is then simply a function from an Assign-
ment onto a truth-value, written:

Constraint : Assignment! Boolean:
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That is, given a set comprised of a choice for each
ambiguity, determine whether the constraint is true or not.
The application of such a constraint to an assignment will
be written, simply, “c d.” Think of d as a table lookup
function that c must use whenever it encounters an
ambiguous reference. For example, constraint 2 evaluates
whether the message calling direction is consistent with the
association direction required by the class structure (in
Fig. 1). Assume the designer selects the choice Service for
ambiguity AE7 in Fig. 1 (the Assignment). Notice that
constraint 2 must hold for all messages of all classes. If
constraint 2 is applied to message select of the Display class,
then it navigates to its receiver and sender objects and
requests their base types. For message select, the sender
object’s type is Display and the designer requires that the
ambiguous receiver object’s type be Service. Thus, the
constraint evaluates to true because the Display class in
Fig. 1 is allowed to call the class Service, indicated by the
bidirectional association between the two classes in the class
diagram. On the other hand, this same constraint would not
evaluate to true if the receiver object’s type were Streamer
because Streamer is not allowed to call Display.

Constraint 2 can only be evaluated on message select if
the ambiguity AE7 is resolved. The bottom-left of Fig. 3
depicts the four choices for that ambiguity. Since the
construct only contains one ambiguous reference, there
are four singleton assignments for this constraint that result
in the constraint being either true or false. That is, the
assignment fAE7j ! Displayg results in the constraint
being true, while the assignment fAE7j ! Streamerg results
in it being false.

Constraint 2 may also be evaluated on message connect of
the class Display. In this case both object types (sender/
receiver) are ambiguous. To evaluate this constraint, a
single Assignment must include both ambiguities. For
example, the assignment fAE7j ! Display; AE12j !
Displayg causes the constraint to evaluate to true, whereas
the assignment fAE7j ! Streamer; AE12j ! Serviceg ren-
ders it false. Fig. 3 (right) shows that, if the sender object

type is assumed to be Display, then the receiver object type
must be either Display or Service.

Observe that constraint 2 evaluated on message select is
like a unary CSP constraint (one ambiguity encountered)
while the same constraint evaluated on message connect is a
binary CSP constraint (two ambiguities encountered). We
will also see that this structure may be irregular where the
choices in one ambiguity affect what other ambiguities are
encountered later (e.g., constraint 1 on message connect in
Fig. 6). This aspect is not typical of traditional CSP
problems, but it does not preclude the use of CSTs for
dealing with ambiguous UML models. Indeed, this is
beneficial for scalability because it implies that k-ary UML
constraints are not as expensive to evaluate as typical k-
ary CSP constraints. We discuss this in detail later.

4.2 What the Developer Needs

Our vision is that the designer is exploring a design space,
largely manually, by laying out new model elements,
adding/removing ambiguities and choices, adding/remov-
ing constraints, and making choices for individual ambi-
guities or whole sets of ambiguities—until, finally, there is a
single assignment with which he or she is satisfied.
Naturally, this assignment must satisfy the CSP, but, by
the time the designer is done, there may remain myriad
assignments that would still be valid solutions. We
reemphasize, the designer is really only interested in one
and no tool is able to know the actual constraints that
make this the best—or a “good enough”—assignment.
Formulating them to reflect matters of taste, style, or
systematic design rules would be too expensive and
distracting. Hence, the focus of our support is on helping
the designer to explore this space.

So, when a designer removes a choice from considera-
tion, if this implicitly causes other choices to become
infeasible, our approach will allow the user to examine
the consequences before allowing the system to remove
them. It must be possible for the user to “unmake” the
choices and have the system respond reasonably, i.e., in
some sense, “incrementally,” [10] rather than requiring the
designer to start again from scratch.

For example, the evaluation of constraint 2 on the
message connect in Fig. 3 implies that AE12j ! Server is
only feasible if AE7j ! Streamer is chosen. Thus, without
considering any other constraint, a user’s decision to
eliminate AE7j ! Streamer also requires that AE12j !
Server be eliminated. We know this because all other
assignments of this constraint that include AE12j ! Server;

fAE7j ! Service; AE12j ! Serverg;
fAE7j ! Display; AE12j ! Serverg;

and fAE7j ! Server;AE12j ! Serverg cause the constraint
to evaluate to false. This kind of reasoning is typical for
constraint propagation in CST. Fortunately, this kind of
reasoning is computationally tractable because only indivi-
dual constraints have to be investigated.

One must reformulate the problem statement above
slightly to express our support for the developer during
software development. Our support hinges on the
maintenance of the set of ambiguity-choice pairs, called
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TheChoices, containing tagged choices for ambiguities
that have not yet been eliminated by the designer or our
support tools; TheChoices will always be a subset of the
initial set of choices, ICh (note that we often refer to “a
choice” but really mean an ambiguity-choice pairing). If one
examines this set, there may be some ambiguities for which
there is only a single pairing remaining; effectively, choices
have been made for those ambiguities. If the entire set is
comprised of such ambiguities, TheChoices will be an
Assignment and the CSP will have been solved.

Fig. 4 depicts an overview of the workflow of our
approach. We evaluate consistency rules one at a time. If a
rule succeeds, then it returns true or false, depending on the
correctness of the model. However, if an ambiguity is
encountered, then the evaluation fails (an exception is
thrown) and our approach replaces the ambiguity with one
of its choices and reevaluates the consistency rule. The rule
either succeeds now or it fails again if another ambiguity is
encountered. Ambiguities are thus replaced systematically
until the evaluation succeeds. The evaluation is then repeated
for all choices and choice combinations of the encountered
ambiguities to explore the space of “feasible” choices—those
are the choices that satisfy the consistency rule and, thus,
those are the choices a designer is interested in. The
remaining, unused choices are eliminated. Also eliminated
are dependent choices.

4.3 Choice Eliminations, One Constraint at a Time

For each constraint, CSTs keep track of all assignments that
satisfy that constraint (i.e., cause it to evaluate to true). This
set of all of the assignments satisfying a constraint is called
the “positive assignments.”

pos : Constraint! ½Assignment�j
pos c ¼ fd : Assignmentjd � ICh ^ ðc dÞ � dg:

This says that Pos is a function from Constraints to sets
of Assignments; it is defined to be (Z symbol: “|”) the set of
all possible assignments made from elements of ICh, filtered
by those that satisfy constraint c. Notice the expression after

the dot (Z symbol: “�”) is the element collected up in the set
in the Z notation, here the filtered Assignment d.

For example, the set of positive assignments for con-
straint 2 applied to message select is the subset of the
assignments from Fig. 3 that caused the constraint to
evaluate to true: ffAE7j ! Displayg; fAE7j ! Servicegg.
And, that the set of positive assignments for constraint 2
applied to message connect is

ffAE7j ! Display;AE12j ! Displayg;
fAE7j ! Display;AE12j ! Serverg;
fAE7j ! Service;AE12j ! Displayg; . . . ;

fAE7j ! Server;AE12j ! Servergg:

The approach actually maintains, for each constraint, the
set of smallest assignments that satisfy the constraint. As
was discussed earlier, UML constraints are black-box
constraints and it cannot be predicted what ambiguities
they will encounter.

Our approach determined these assignments through
model profiling. During the evaluation of the black-box UML
constraints, the model profiler observes the runtime behavior
of these constraints. The constraint evaluation succeeds if no
ambiguities are encountered (i.e., it evaluates to true or false).
But, it aborts if an ambiguity is encountered. The exact
details of the profiling are discussed in [11], but we
essentially use instrumentation technology to spy on
commercial modeling tools, such as IBM Rational Rose, to
observe, in real-time, what model elements are accessed. If
we observe that a constraint accesses an ambiguous model
element, then we abort the evaluation of that constraint and
report back the ambiguity. The ambiguity is then system-
atically replaced by its choices in the constraint and
revalidated. Fig. 5 describes this algorithm. It recursively
explores assignments through trial and error. If a constraint
aborts, then the encountered ambiguity is replaced followed
by a recursive reevaluation of the constraint (note: in our
implementation, the constraint evaluation is aborted
through an exception caused by accessing an ambiguous
model element). The recursion continues, substituting
choices made for the required ambiguities until all assign-
ments have been explored. Once successful, the assignment
consists of all choices that were encountered and substi-
tuted. This mechanism guarantees assignments to be
minimal (a set of assignments is minimal if no subset of it
exists that could also successfully evaluate the same
constraint) because no ambiguities are ever replaced by
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choices unless required for successful constraint evaluation.
It is important to mention that the choices for any ambiguity
are chosen from TheChoices. Notice now that Pos c is really
just the set of assignments that can be made by extending
the empty assignment via extendAssignment.

If a constraint encounters an ambiguity that is undefined
(i.e., for which there are no defined choices), then it cannot
be evaluated. Such a constraint is reported to the user as an
unresolved constraint with a pointer to the undefined
ambiguity (i.e., the last ambiguity encountered by that
constraint). If a constraint encounters too many ambiguities,
then its evaluation will also abort. Such a constraint is
reported to the user with a list of all encountered
ambiguities (which is not necessarily a complete list of
ambiguities as the evaluation was aborted). As was
discussed previously, it is not necessary for the user to
handle unresolved constraints as they do not negatively
impact the conservative properties of our algorithm.

4.4 Mandatory and Optional Ambiguities

In CST, if a variable is used by a constraint, then all
assignments of that constraint include a choice for that
variable. Certainly, there are UML constraints where a
particular ambiguity must be resolved in every positive
assignment satisfying the constraint (i.e., those ambiguities
in Pos c). Recall, e.g., that constraint 2 evaluated on
message select was a unary constraint where every positive
assignment included a choice for ambiguity AE7, and
constraint 2 evaluated on message connect was a binary
constraint, where every positive assignment included a
choice for AE7 and AE12 (Fig. 3). The ambiguities that are
referenced in every positive assignment are referred to as
mandatory ambiguities (the following reads in Z, take the
intersection of the domains of all Assignments in pos c):

mand : Constraint! ½Ambiguity�j
mand c ¼

\
fd : Assignmentjd 2 pos c � dom dg:

All CSP formulations deal with mandatory ambiguities.
The important observation to be made of a mandatory
ambiguity is that: If a choice for a mandatory ambiguity does not
occur in at least one assignment in the set of positive assignments
for the constraint, then that choice is invalid and can be
eliminated safely (see [20]). That is, since it is never used in
an assignment that satisfies that particular constraint, it can
never be used in an assignment that satisfies all constraints
(i.e., because we know of at least one constraint that cannot
be satisfied). This choice can be eliminated from considera-
tion permanently. This elimination is based on the evalua-
tion of a single constraint and does not depend on the
evaluation of any other constraint. For example, the set of
positive assignments for constraint 2 on message select
includes the mandatory ambiguity AE7 and it only uses the
choices Display and Service. Since the choices Streamer and
Server never satisfy this constraint, they are infeasible and
can be eliminated (independently of all other constraints
and choices). Another example is the list of positive
assignments of constraint 2 evaluated on the message
connect. It contains the two mandatory ambiguities, AE7 and
AE12. Since all their choices are used in at least one
assignment, no choices can be eliminated. Recalling that the

designer provides the set of Pairings, ICh, the following
algorithm describes which choices can safely be eliminated
based on mandatory ambiguities for each constraint in IC
(this is an adaptation of AC-3 [20]):

InvalidChoices :PPPP ICh! PPPP IChj
InvalidChoices TheChoices ¼ [ fc : Constraintjc 2 IC�
[ fq : Ambiguityjq 2 mand c�
ðfqg / TheChoicesÞgn [ Pos cg:

This can be read, for each constraint union together all
values for that constraint’s mandatory ambiguities that
occur in TheChoices and are not in some positive assign-
ment for that constraint (in Z, the “\” is the set difference
operator and the restriction of TheChoices to those pairs
with q in the domain is written {q} / TheChoices). These
choices may safely be removed from the set, TheChoices,
because each element is identified with a particular
constraint that must fail if the choice is included. Notice
that the union over the positive assignments for c is really
the set of remaining choices valid in some assignment for c,
so it is like a specialized version of TheChoices for each
constraint. In fact, the implementation takes advantage of
this fact and keeps track of the union rather than the
individual assignments themselves. Notice also that, as the
set difference is taken in the formula above, if all choices for
a mandatory ambiguity are removed, that particular
constraint will not be satisfiable and the problem will
become inconsistent. It is easy to keep track of this and
report it to the designer.

It is an important property of the algorithm that this
precise description of where the removed choice causes
failure is available; not all proof mechanisms have this
capability and the designer could be at a loss for
discovering exactly what went wrong. Again note that the
actual algorithm will have to keep track of the invalid
choices eliminated to show them to the designers so they
can determine whether their choices had otherwise un-
desirable or surprising effects.

In most CSP formulations, all ambiguities are manda-
tory. Yet, in languages involving first-order logic and
quantifiers (such as UML consistency rules), some ambi-
guities may not participate in all positive assignments of a
constraint. The ambiguities that are referenced in some but
not all positive assignments are referred to as optional
ambiguities. Optional ambiguities are conditionally depen-
dent on the choices for other ambiguities. As an example for
an optional ambiguity, consider the evaluation of con-
straint 1 on message connect (this constraint ensures that
messages used in sequence diagrams are defined as
methods in their corresponding classes). While applying
this constraint to the message connect (see sequence
diagram), it again encounters the ambiguity for the object’s
type. From before, we know that there are four types
available for the object: Display, Service, Streamer, and Server.
The constraint is thus applied to all four types with the
following finding: Service does not have a method with the
name connect. The set of methods for Display is ambiguous,
but, after evaluating all its choices, none of them has a
method with the name connect. Streamer has a method called
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connect, but only if the first choice of its ambiguous set of
methods is chosen. Finally, Server also has a method called
connect. In summary, the set of positive assignments is short
and is comprised of only the two assignments

< fAE12j ! Streamer; AE5j ! ½connect; stream;wait�g;
fAE12j ! Serverg >

(see Fig. 6). The ambiguity AE12 is part of all positive
assignments and is thus mandatory, but the ambiguity AE5
is not because it is used in only one of the two positive
assignments.

It is important to distinguish between mandatory and
optional ambiguities. Obviously, choices AE12j ! Display
and AE12j ! Service are infeasible because they are part of
a mandatory ambiguity but not used in any positive
assignment. It is, however, not possible to eliminate the
choice AE5j ! ½stream;wait� because ambiguity AE5 is
optional. That is, this choice only becomes infeasible if a
developer decides on choice AE12j ! Streamer. Since there
are two available choices for AE12 and the user has not
picked one of them, it is not possible to safely eliminate the
optional choice. It is not possible to eliminate the choices of
AE1 for the same reason. Optional ambiguities may appear
to be a hindrance to CSTs, but there are, in fact, two factors
that are beneficial:

1. Optional ambiguities happen in parallel and do not
add to the computational complexity in the same
way as mandatory ambiguities do.

2. Optional ambiguities may become mandatory ambi-
guities and, thus, be eliminatable.

In CSP, if a constraint uses three variables, then it is a
3-consistency problem, which is much more complex to
solve than a 2-consistency problem. The UML constraint 1
evaluated on message connect encounters three ambigu-
ities, but it is a 2-consistency problem because AE1 and AE5
never occur in the same positive assignment. This is a very
significant computational benefit. How optional ambigu-
ities become mandatory ambiguities is discussed next.

4.5 Promoting Optional to Mandatory Ambiguities

CST eliminates choices based on the evaluation of indivi-
dual constraints without investigating ambiguities not part
of the positive assignments of that constraint and without
investigating other constraints and their assignments.

The definitions of pos and (therefore) of mandatory have
relied on the set of all possible assignments of individual
constraints only. However, we know that constraints
influence one another because they overlap in their use of
common choices. Until now we have not taken into account

the possible reduction of the choice space by eliminating the
invalid choices from the positive assignments of each
constraint when they are eliminated from TheChoices. In
CST, this is the familiar constraint propagation. In other
words, if a choice is eliminated, then it should no longer be
part of any positive assignment of any constraint (neither
mandatory nor optional). This can be accomplished by
making the definition of positive assignment sensitive to the
context of previously eliminated choices. To do this, after
the designer eliminates choices from TheChoices, a process
called EliminateChoices must remove from TheChoices
those choices determined to be InvalidChoices.

So, to introduce context sensitivity into the computation
of the assignments, they too are recomputed based on the
dynamically changing value of the variable TheChoices.
Notice that this also has an effect on the meaning of
mandatory, so ambiguities that were optional may become
mandatory.

pos : Constraint! ½Assignment�j
pos c ¼ fd : Assignmentjd � TheChoices ^ c d � dg:

The updated pos c now includes the condition that a
positive assignment must evaluate a constraint to true and
it must consist only of choices not yet eliminated from
consideration, TheChoices—actually, those “not known to
be invalid.” Since TheChoices is a global set (i.e., choices are
permanently eliminated from all constraints that use them),
we have now created a feedback loop between Pos c and
EliminateChoices. Hence, EliminateChoices must be applied
until TheChoices converges to a unique set. That is,
EliminateChoices eliminates choices in context of single
constraints; however, this elimination has global conse-
quences because it affects the positive assignments of all
other constraints (previously evaluated ones and the ones
not yet evaluated).

This implies that choices eliminated by one constraint
need not be considered during the evaluation of other
constraints. However, Fig. 3 or Fig. 6 did not consider this
effect. Fig. 7 depicts the assignments of the same three
constraints and their feedback loops during the elimination of
choices. The top of Fig. 7 shows the assignments for
constraint 1 on message connect, which was depicted in
Fig. 6. Two choices can be eliminated: AE12j ! Display and
AE12j ! Service. The middle of Fig. 7 shows the assignments
for constraint 2 on message connect; however, the already
evaluated choices need not be considered. Fig. 3 previously
depicted many positive assignments for this constraint with
no unused choices—no choices could be eliminated. Without
AE12j ! Display and AE12j ! Service, however, AE7j !
Display becomes infeasible and can be eliminated.

The feedback loop also affects positive assignments of
previously evaluated constraints. For example, after evalu-
ating the third constraint (Fig. 7 bottom), we find that only
AE7� > Service remains feasible. Yet, AE7� > Streamer
and AE7� > Server were both used in positive assign-
ments of the second constraint. It is necessary to adjust the
positive assignments of all constraints that previously used
the now invalid choices. This feedback is depicted in Fig. 7
(right side), where now only one positive assignment
remains for the second constraint.
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We know from the previous discussion that a reduction
of the set of positive assignments may also reduce how
choices of mandatory ambiguities are used in context of that
constraint. Indeed, we discover that the choice AE12j !
Server is no longer used by any positive assignment of the
second constraint—it can thus be eliminated also. The
elimination of the choice AE12j ! Server causes another
feedback loop. As before, all positive assignments of
constraints must be adjusted that used this latest eliminated
choice. We find that AE12j ! Server was used previously
during the evaluation of the first constraint (see the top of
Fig. 7). Recall that the list of positive assignments for
constraint 1 on message connect was

< fAE12j ! Streamer;AE5j ! ½stream;wait; connect�g;
fAE12:Serverg >:

This included the mandatory ambiguity AE12 and the
optional ambiguity AE5. However, after eliminating the
now-invalid assignment fAE12j ! Serverg, we find that
AE5 is no longer optional. The status of the optional
ambiguity is elevated to a mandatory one and now its
unused choices become invalid: AE5j ! ½wait; stream� is
thus eliminated from TheChoices and no further action is
required because no positive assignment of any constraint
used this choice.

Formally, this implies that our algorithm eliminates
choices based on the interplay among Pos c, Mand c, and
InvalidChoices—considering the effects of mandatory and
optional ambiguities. This is essentially constraint propaga-
tion in CSP and it stops when a stable set is found where no
more choices can be eliminated and all positive assignments
do not contain infeasible choices. Constraint propagation is
deterministic. It also never eliminates a choice in error as
long as the user’s choices do not render the problem
unsatisfiable.

CSTs have very fast algorithms to implement this
feedback loop through the use of tables and counters.
However, optional ambiguities are not part of the CST
repertoire. Our implementation thus maintains the list of
positive assignments for every constraint. The implementa-
tion also maintains dependencies among the positive
assignments, ambiguities, choices, and constraints such
that it is possible to navigate among them. For example, if a
choice is eliminated, the choice knows all the positive
assignments that use it (i.e., it was told by every positive
assignment at the time of creation). Thus, there is no need
for expensive searches across the entire space of positive
assignments. In turn, the elimination of a positive assign-
ment updates all its ambiguities and choices about its
deletion such that a later choice elimination does not revisit
this assignment again. Thus, an assignment is visited only
once in the feedback loop, during its elimination—a linear
complexity.

During the elimination of an assignment, it becomes
necessary to recompute the unused choices of mandatory
ambiguities for they must be eliminated also. Our imple-
mentation uses a simple counter system (adapted from
AC-3 and later versions [20]) to quickly compute “manda-
tory” and “used.” That is, ambiguities and choices maintain
their separate counters for every constraint that uses them.
If an assignment is created that uses a particular ambiguity
and choice, then their counters are incremented for that
constraint. At the time of the elimination of an assignment,
a mandatory ambiguity is the one where the counter equals
the size of positive assignments (an ambiguity is mandatory
if it is being used in every assignment; otherwise, it is
optional). Similarly, a choice is “used” if the choice counter
of the constraint is greater than zero (there is at least one
assignment for that constraint that uses the choice).

4.6 Impact of Unevaluated Constraints

Finally, it is worth noticing that, since the algorithm only
ever eliminates choices and the addition of a new constraint
could never actually make an eliminated choice suddenly
satisfy the constraint in which it was mandatory and false,
the algorithm will never have eliminated a choice that
should “reappear” if new constraints are added, even if
new ambiguities are introduced or new constraints are
added. The only situation in which a decision made by the
algorithm is wrong occurs when a previous constraint is
determined by the user to be unnecessary.

5 DEFINING MODELS, AMBIGUITIES, AND THEIR

CHOICES IN IBM RATIONAL ROSE

Our approach to ambiguous reasoning is integrated with
IBM Rational Rose for creating and maintaining UML
models. Since Rose is not capable of modeling choices, we
created a separate Rose plug-in for defining choices. The
plug-in links the Rose model elements and the choices. The
ambiguities reasoning tool is yet another Rose plug-in that
uses the Rose model and its choice information as was
described in this paper. Fig. 8 depicts Rose on the top and a
screen snapshot of our reasoning tool on the bottom. The
top portion of our tool shows the positive and negative
determination of a selected constraint and the bottom
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portion shows an ambiguity with its remaining valid
choices. The reasoning tool is also integrated with the
UML/Analyzer consistency checking tool [10] (another
Rose plug-in) which is used for constraint validation. In
the next section, we demonstrate the tool’s scalability,
having evaluated over 27 third-party models with tens of
thousands of model elements and over 16,000 constraints.

6 Validation

This section demonstrates that the computational complex-
ity of our approach yields a method whose use is
inexpensive enough that developers can use it comfortably.
We also demonstrate that its results are a near-optimal
approximation of the ideal solution. Our goal here is to
demonstrate that typical models that one encounters in
practice, even models with tens of thousands of elements,
can be evolved using our tools.

Table 1 lists 25 third-party models (some scraped from
the Internet, others provided by industrial partners) and
two in-house developed models that were used to evaluate
our approach. These fully developed models differ sub-
stantially in model size and types of model elements used,
yet almost all of the models are large and purport to
accomplish useful tasks. The models were evaluated using
an existing UML consistency checking tool, the UML/
Analyzer [10]. The UML/Analyzer tool was prepro-
grammed to handle 24 consistency rules [28] (including
the ones in Fig. 2) and, in total, these rules were evaluated
over 16,000 times for the 27 sample models. The 24 con-
sistency rules were chosen because they covered the needs

of our industrial partners, foremost the Boeing Company.

The rule set is reasonably complete for dealing with the

consistency of sequence diagrams.

6.1 Computational Complexity

Our approach consists of essentially two steps: The first step

identifies positive assignments for every constraint indivi-

dually and the second step eliminates choices.
Step 1: Depending on how many ambiguities are encoun-

tered per constraint, APC, and how many choices per

ambiguity exist, ChPA, there are DPC ¼ ChPAAPC assign-

ments per constraint. The number of assignments per

constraint increases exponentially and it is important for

scalability to ensure that the exponential factor APC is small

and does not increase with the size of the model. For a given

number of constraintsC#, there are thusD ¼ C# � ChPAAPC

total assignments, of which we only record the positive

assignments, a subset ofD. The cost of a single evaluation of a

constraint is proportional to the number of fields visitedCsize
and a constraint must be evaluated for every assignment. The
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TABLE 1
Characteristics of the 27 Evaluation Models,
Number of Constraints, and Constraint Sizes



computational complexity of computing all assignments of
all constraints is thus OðC# � Csize � ChPAAPCÞ.

Step 2: For every eliminated choice, it is necessary to
identify all previously computed, positive assignments
that are affected. Only the assignments of those con-
straints are affected that use the eliminated choice. Since
an eliminated choice is equivalent to a changed ambi-
guity, we define CPA—constraints per ambiguity—to be
the number of constraints affected by a change in an
ambiguity. Only those assignments must be eliminated
that use the choice, the assignments per choice, DPCh ¼
ChPAðAPC�1Þ (i.e., the eliminated choice and all its
combinations with the APC � 1 other ambiguities). After
the assignments have been eliminated, it is necessary to
check whether some optional ambiguities have become
mandatory and whether some of the choices of mandatory
ambiguities are no longer used (i.e., these choices may then
be eliminated also). We demonstrated that this computation
can be ignored for computational complexity, which
implies a worst-case cost for Step 2 of APC � ChPA. The
computational complexity of eliminating a choice is thus
OðCPA � ðChPAðAPC�1Þ þAPC � ChPAÞÞ.

In the following, we will present empirical evidence that
Csize, CPA, and APC are small values that do not increase
with the size of the model. We will further demonstrate that
C# is linear in the size of the model. Only the value of
ChPA is unknown as it is a user-definable value, but, in
software design efforts, it is expected to be small (i.e., the
user likely does not want to define a large number of
choices per ambiguity). We thus conclude that the
computational cost of Step 1 is linear in the size of the
model and that the cost for Step 2 is not affected by the size
of the model (i.e., despite the exponential factor).

6.2 Scalability Drivers

The scalability (computational complexity) of Ambiguous
Reasoning is that of Consistency Checking plus the overhead
imposed by creating and navigating the dependency
network discussed in this paper.

Our approach does not improve on consistency check-
ing. We thus inherit its computational complexity, which,
fortunately, is linear in the size of the model and the
number of consistency rules used, C# � Csize. That is, we
applied the consistency checker (the UML/Analyzer) to the
27 sample projects and measured the number of constraints
C# and constraint sizes Csize. The number of times
constraints are evaluated depends on the number and
types of available model elements. Recall that most of the
constraints in the UML model come about from instantiat-
ing rules about classes or methods in general, so one can
expect a given number of constraints to arise whenever a
class is ambiguous, for example. However, given that the
27 sample projects were very diverse in contents and size,
we expected some variability in C#, but found that it
followed a linear trend closely, that is, C# rose linearly with
the size of the model M# (see Table 1). Similarly, we
expected Csize to be variable for the same reasons. Indeed
we measured a wide range of values between the smallest
and largest Csize (min/max), but found that the average did
not increase with the size of the model (see Table 1). Thus,
we conclude the factor C# � Csize to be linear with the size of

the model in these typical applications. Note that Csize not
increasing with the size of the model seems counter-
intuitive. One would expect that constraints would evaluate
more model elements the larger the model. However, this
turns out to be wrong. The increase in model size is fully
absorbed by an increase in C#. This finding implies that the
model size may increase, but the relative complexity of
individual model elements do not.

Notice from the incremental (second) formula above that
the two factors, CPA and APC, are key evaluation
parameters for the computational complexity of ambiguous
reasoning. These factors are related in an interesting way.
Consider the simple example in Table 2. The columns and
rows of the table depict the constraints and ambiguities of
the illustration we used throughout this paper. If a field
contains an “X,” then the constraint (row) encountered the
ambiguity (column) during the constraint’s evaluation.
Again, APC represents how many such ambiguities are
encountered per constraint on average. That is, we find that
the four constraints in the illustration encountered 1þ 2þ
3þ 3 ambiguities, which is equal to 2.25 ambiguities per
constraint in average. CPA is the average number of
constraints per ambiguity. The seven ambiguities in the
table encountered 1þ 1þ 2þ 0þ 3þ 1þ 1 constraints for
an average number of 1.29 constraints per ambiguity.

If we denote A# to be the number of ambiguities
(columns of the table), then we can say that there are
exactly C# times A# fields in the table and at most that
many “X”s. The total number of “X”s can be tallied in two
ways, yielding the equality: C# �APC ¼ A# � CPA.

In addition, we can compute APC in a simple way that
involves the constraint size, model size, and number of
ambiguities:

APC ¼ A# Csize
M#

:

That is, the ratio of A# to M# defines the likelihood that a
single model element is ambiguous. Since Csize defines the
number of model elements used per constraint, the product
of Csize and the likelihood must be the number of
ambiguities per constraint. Hence,

CPA ¼ C# APC

A#
¼ C# Csize A#

A#M#
¼ C# Csize

M#
:

There are two interesting observations about the two
formulas forCPA andAPC. First, both involve the ratioCsize
to M#. Second, there is no information about ambiguities in
the formula that computes CPA! It must be emphasized that

EGYED AND WILE: SUPPORT FOR MANAGING DESIGN-TIME DECISIONS 309

TABLE 2
Relationship between CPA and APC Illustrated

on the VOD Sample



M#, C#, and Csize are scalability factors of consistency
checking that are inherited by ambiguous reasoning only.
In effect, CPA is not just the number of constraints per
ambiguity. Since an ambiguity is a special model element,
CPA is in fact the number of constraints per model element.
That is, if a model element changes (whether it is ambiguous
or not), CPA tells how many constraints are affected by the
change. This explains why CPA is computable without any
information about ambiguities.

For the scalability of ambiguous reasoning, we need to

prove that CPA and APC are scalable with respect to the

model size M#. This is straightforward because we know

that Csize does not increase with the size of the model and

C# grows linearly with the size of the model. That is, since

both are divided by the model size M#, this suggests that

CPA should not increase with the size of the model because

the growth of M# will cancel out the growth of C#.

To demonstrate this linear behavior empirically, we

computed the values of CPA for the 27 sample projects.

Fig. 9 depicts the linear behavior for CPA and shows that

its value is, on average, 3.7 and that it is not affected by the

size of the model. This CPA value implies that there are

only few constraints affected by a change in the model (i.e.,

an ambiguity change such as the user’s deletion of a choice).

Given that APC and CPA only differ in A# and C#, this

suggests that A# is allowed to grow linearly with the size of

the model for APC to not be affected by the increased size.

Thus, the size of the model does not negatively affect APC

and the number of ambiguities in the model may rise

linearly with the model size, which is important for

usability. That is, a user may likely want to define more

ambiguities for larger models than for smaller ones and, for

computational scalability, the user may do so for as long as

the ratio A# to M# stays constant.
Fig. 10 empirically confirms the linear behavior of APC

on the 27 sample projects (note the exponential x-axis). The
figure shows APC in context of different ratios of
ambiguities (A# to M# ratios). This is important because
the number of ambiguities is a user-defined factor and it
may differ significantly among projects (i.e., note that the
number of constraints was not user-defined, but implied by
the types and instances of model elements). It is thus

necessary to consider the effect of APC in relationship to the
different ratios of ambiguities.

Thus far, we have presented the scalability of APC and
CPA in that its growth is independent of the model size.
While there is some fluctuation among the 27 sample
projects, this fluctuation is small and we discuss the worst-
case behavior below. Recall that this is important for
scalability because the first step computes the set of positive
assignments for every constraint and there is an exponential
number ChPAAPC of potential assignments per constraint,
where ChPA is the number of choices per ambiguity.

This exponential growth would pose a significant
problem to our approach if the exponential factor were to
increase with the size of the model. As was demonstrated,
APC is essentially a small, constant factor and it is not
affected by the size of the model. It is only affected by how
ambiguous the model is and how many types of constraints
are used. That is, APC stays relatively constant, while the
model size, M#, and the number of ambiguities, A#,
increase for as long as A# does not increase faster than
M#. We believe that this is a reasonable assumption.

This reasoning has, however, one significant flaw. We
made the argument in favor of average numbers (e.g.,
average number of ambiguities per constraint). We have not
actually demonstrated our approach’s computational per-
formance under worst-case conditions (e.g., constraint size
is large). The table below depicts the APC for the worst
constraints of the over 16,000 evaluated constraints. While
the APC is still a relative constant, the exponential factors
are unreasonable for all but the smallest ratios of ambiguity
(< 2% ambiguity).

To make matters worse, we previously assumed an equal
distribution of ambiguities across the entire model. It is,
however, possible that there are areas in the model with a
higher concentration of ambiguities. In these areas, even a
smaller constraint would encounter a larger number of
ambiguities and run into scalability problems. It is thus
unlikely that our approach is able to evaluate all constraints.
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Fortunately, a basic assumption of our approach is that the
algorithm does not even have all the constraints that
influence the choices being made. So, the algorithm can
“at will” decide not to evaluate some constraints. The
conservative properties of our approach are guaranteed
regardless of how many constraints are actually validated.
However, the effectiveness of our approach decreases with
the fewer constraints it can evaluate (i.e., it becomes less
optimal, albeit it is still correct). It is thus desirable to
evaluate as many constraints as possible.

While it is not possible to predict the worst-case
execution scenarios, we do know that worst-case scenarios
increase with the constraint sizes. A constraint that is twice
as large is likely to encounter twice as many ambiguities.
The true scalability issue here is thus the constraint size,
Csize. While there are some outliers where Csize is large, we
found that the likelihood of Csize being large decreases
drastically (95 percent of all 16,000 constraints used fewer
than 26 model elements). This implies that most constraints
can be evaluated with a small APC factor, as depicted in the
table below. The table shows APC for Csize ¼ 25 (95 percent
of all constraints) and Csize ¼ 10 (80 percent of all con-
straints).

In summary, while some constraints may be large (even
global), most consistency and well-formedness constraints
are actually very small conditions that involve only a
handful of model elements. Seventy-four percent of all
constraints evaluate five or less model elements. In the
worst-case scenario, these constraints encounter five or
fewer ambiguities (every model element is ambiguous), but
this worst-case scenario is not meaningful to a user (i.e.,
what is the meaning of a model, or subset thereof, that is
100 percent ambiguous). For comparison, the illustration in
this paper used seven ambiguities on 89 model elements.
This implies an ambiguity of less than 1 percent. We do not
believe that users would define models more ambiguous
than this, but we see that, computationally, we can handle
5 percent ambiguities for more than 95 percent of all
constraints. We believe that this is a very reasonable
assumption.

To illustrate what these values for APC imply in practice
during the evaluation of constraints, we performed another
experiment where we again randomly seeded ambiguities
into models with arbitrary ratios of ambiguities ðA#=M#Þ.
We then evaluated constraints of various sizes on the model
and observed the likelihood of these constraints becoming
unsatisfiable because of too many assignments. Thus, for
A#=M# being between 0 percent and 20 percent and Csize
being between 5 and 50, what percentage of the total
number of constraints could not be evaluated because they
exceeded the threshold of DPC � 100 (number of assign-
ment above 100)? The result of this experiment (not
depicted) showed that, for small ratios of ambiguities, most
of the constraints could be evaluated without exceeding the
threshold. We observed a nonlinear relationship between
the ratio of ambiguities and the percentage of unscalable

constraints, which is not surprising given the exponential
factor involved (i.e., DPC ¼ ðChPAÞAPC). Recall that
95 percent of all constraints evaluate less than 25 model
elements. Of these 95 percent of constraints, 90 percent can
be evaluated without encountering scalability issues for
models with less then 8 percent ambiguity. Of the 80 percent
of constraints that evaluate less than 10 model elements,
90 percent can be evaluated without encountering scal-
ability issues for models with less than 17 percent
ambiguity. A ratio of ambiguity of 8 percent or more is
huge. It would support thousands of ambiguities in the
27 sample projects (e.g., for the Boeing MoBIES project,
8 percent ambiguity allows for 1,018 ambiguities). We
expect that this limitation in the number of ambiguities is
more than adequate for designers. After all, each designer
is, in some sense, balancing the trade-offs of all the
ambiguities at once. Although large projects involve several
designers, this is still a very large number of design axes to
maintain control over.

6.3 Effectiveness

We evaluated the effectiveness of our approach by
comparing its results with the optimal solutions on
thousands of scenarios. Deriving an optimal solution is
easy, but computationally very expensive. We thus had to
limit the validation of effectiveness to small-scale models.
To ensure that our findings are applicable to large-scale
models, we scaled case studies down, but maintained the
critical ratios. That is, the effectiveness (not the computa-
tional cost) of using our approach on an M# ¼ 10; 000
model element model with A# ¼ 1; 000 ambiguities eval-
uated with constraints of average size Csize ¼ 40 is the same
as the effectiveness of using an M# ¼ 100 model element
model with A# ¼ 10 ambiguities evaluated with constraints
of average size Csize ¼ 4 (a proof for this is omitted, but can
be inferred from the previous section). Thus, our validation
method was to randomly inject ambiguities into small-scale
models. Through this method, we systematically explored
the effectiveness of our approach in relationship to different
values for ChPA, APC, and CPA on hundreds of scenarios.

Most importantly, this analysis confirmed that our
approach is indeed conservative in reducing choices and
detecting inconsistencies. Regardless of the usage of our
approach (ratios), our approach always reduced a subset of
the choices also reduced by the optimal approach and it
identified a subset of the identifiable inconsistencies, even
in the presence of unscalable constraints or undefined
ambiguities.

This analysis also determined how well our approach
reduced choices and identified inconsistencies in relation-
ship to the optimal solution. In addition to the already
known variables APC, CPA, and ChPA, this analysis also
needed to consider the likelihood that constraints evaluated
to true C%¼true. To understand the meaning of C%¼true,
consider the following extreme scenarios: If a constraint
always returns true, then all potential assignments are
positive assignments and no choices are ever reduced
(neither optimal nor our approach). On the other extreme, if
a constraint always returns false, then there cannot be a
positive assignment, which implies that all choices remain
unused and are eliminated. Clearly, the likelihood that a
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constraint evaluates to true affects the number of choices
that can be reduced. The lower C%¼true, the more choices are
eliminated. Our approach’s effectiveness is affected by
C%¼true and, thus, we considered this factor during analysis.

We made three interesting observations while investigat-
ing the effectiveness on the sample models. First, a higher
APC reduces the optimality of our approach. Second, the
optimality of the approach is not affected by CPA. And
third, our approach is always optimal for APC ¼ 1. Fig. 11
summarizes these observations where the x-axis depicts
APC and the y-axis depicts the percentage of choices
reduced in relationship to the optimal. For example, for
APC ¼ 1, our approach reduced the optimal number of
choices. For APC ¼ 2, our approach is near optimal if
C%¼true is between 10 percent and 30 percent. In the case of
the 16,000 constraints of our 27 models, we found that
C%¼true is less than 30 percent. For this value, our approach
is 99 percent optimal for APC ¼ 2 or 89 percent optimal for
APC ¼ 3. In the context of UML consistency constraints,
and given what we know about the expected values for
APC and ChPA, our approach is thus near optimal (recall
that the worst-case APC is below 3 with 10 percent or less
ambiguity).

Another interesting observation in Fig. 11 is that our
effectiveness increases with higher APC, which is counter-
intuitive but easy to explain. With higher APC factors, even
the optimal approach fails to reduce choices since there are
too many combinations such that there are always some
positive assignments for every choice. This is further
evidence that it is of little interest to the designer to have
arbitrary high APC factors. APC should be less than 3
depending on the value for C%¼true.

In the reasoning above, our computation of optimality
assumed that all constraints are evaluated. However, we
know that there is often a small subset of unscalable
constraints that cannot be evaluated. These constraints are
excluded, but, thus far, we have not discussed how this
exclusion affects the effectiveness of our approach in
relationship to the optimal approach. If a constraint cannot
be evaluated, then it cannot reduce the choices of the
ambiguities used in its assignments. This affects CPA in
that the fewer constraints are evaluated the smaller it gets (a
linear reduction in that half the constraint evaluated

reduces CPA by a factor of 2). Fig. 12 depicts the
relationship between CPA and the percentage of choices
reduced. Again, we derived this data by randomly seeding
ambiguities into hundreds of models. We observed that
there is a nonlinear growth associated with the reduction of
choices: the higher the value for CPA, the less its effect. This
is very good for our analysis because it implies that a subset
of all constraints will account for the reduction of most
choices. For example, CPA ¼ 5 reduces 85 percent of all
choices, whereas CPA ¼ 10 reduces 99 percent of all
choices. This is a nonlinear advantage in that half the
number of constraints will reduce more than half of all
choices. If we account for the small likelihood of large
constraints and the small likelihood of unscalable con-
straints (see Section 6.2), then we can evaluate around
85 percent of all constraints for the 27 sample projects.
While this omits 15 percent of all constraints, it still
accounts for 97 percent of all reducible choices. This
observation has a beneficial side effect: It is of little
significance to the overall effectiveness of our approach, if
we are unable to evaluate all constraints.

The above discussion solely emphasized our approach’s
effectiveness in reducing choices. In addition, our approach
also identifies inconsistencies. We thus empirically evalu-
ated the effectiveness of identifying inconsistencies and
found it to be equal to reducing choices. Since the data is
largely repetitive, it is omitted here for brevity.

6.4 Other Domains and Constraints

Our approach was evaluated for a wide range of domains.
While the evaluation was limited to the UML class,
sequence, and statechart diagrams (arguably the most
widely used modeling notations today), it must be
emphasized that our approach applies to any modeling
situation where CPA and APC are small values that do not
increase with the size of the model. This is extremely
common, for modelers attempt to reduce complexity to
“bite-sized chunks” that people can understand and reason
about easily, leading to few constraints per ambiguity and
few ambiguities per constraint. Moreover, the sizes of such
constraints, Csize, is almost always small compared to the
size of the descriptions built using the model. We
demonstrated that infeasible constraints or constraints that
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Fig. 11. Effectiveness of our approach in reducing choices with

increasing APC.
Fig. 12. Effectiveness of our approach in reducing choices with

increasing CPA.



are overly expensive to evaluate—e.g., requiring proofs or
infinite domains—can be ignored. We also demonstrated
that a small percentage of feasible constraints might
eliminate a large portion of the infeasible choices. Thus,
even a significant percentage of infeasible constraints may
not significantly reduce the effectiveness.

7 CONCLUSION

We believe that, in general, automated tools are incapable
of making good (or even adequate) design decisions for a
designer because such tools do not understand the many
factors that affect a good decision—factors involving
matters of taste, personal preference, gut feeling, experi-
ence, corporate rules, and a range of other issues that are
usually not defined formally. While decision factors can be
modeled as constraints on the model, it is unreasonable to
expect a developer to define a complete set of such
constraints.

This paper presented an adaptation of solutions to the
constraint satisfaction problem for UML that allows a
designer to delay making decisions that affect these (and
other) factors by recording design choices. The designer
contributes a model with choices and a set of known
constraints that the model must satisfy. Of these choices,
our algorithm then identifies the choices that are infeasible
and should not be chosen based on the known constraints.
Our algorithm also identifies dependencies among the
choices (and choice combinations) so that the designer
understands trade-offs among the remaining choices (the
ones that have not been eliminated).

Even though the approach only eliminates a subset of all
bad choices, we demonstrated that it is a very complex task
nonetheless, because of the many constraint dependencies
involved. Despite this complexity, we demonstrated that
the following properties are preserved by the approach:

. No valid choice is ever eliminated from the
designer’s consideration.

. No choice reported to the designer as inconsistent
could possibly be consistent with the decisions made
to that point.

. Determining what choices should be removed is
near optimal.

. The algorithm is computationally scalable.

. The algorithm guarantees all of the above properties
despite the fact that it is not able to evaluate all
constraints (e.g., undefined constraints or unscalable
constraints) or even know about all constraints (e.g.,
taste and preferences).

While the approach was shown to work well within design
suites of a single modern language, it will be applicable in any
situation satisfying the parameters discussed in Section 7.
Understanding how to make the algorithm incremental in
changes to design axes was not considered here—such as
removal of constraints or ambiguities. In addition, how to
marry the algorithm with various design methodologies—
such as stakeholder trade-off or version-based develop-
ment—has been left as future development topics. We also
intend to explore maintenance issues of design choices and
design reuse issues in future work.
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